Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
When ecological and evolutionary dynamics occur on comparable timescales, persistence of the ensuing eco-evolutionary dynamics requires both ecological and evolutionary stability. This unites key questions in ecology and evolution: How do species coexist, and what maintains genetic variation in a population? In this work, we investigated a host-parasitoid system in which pea aphid hosts rapidly evolve resistance toAphidius erviparasitoids. Field data and mathematical simulations showed that heterogeneity in parasitoid dispersal can generate variation in parasitism-mediated selection on hosts through time and space. Experiments showed how evolutionary trade-offs plus moderate host dispersal across this selection mosaic cause host-parasitoid coexistence and maintenance of genetic variation in host resistance. Our results show how dispersal can stabilize both the ecological and evolutionary components of eco-evolutionary dynamics.more » « less
-
Abstract Insects often harbour heritable symbionts that provide defence against specialized natural enemies, yet little is known about symbiont protection when hosts face simultaneous threats. In pea aphids (Acyrthosiphon pisum), the facultative endosymbiontHamiltonella defensaconfers protection against the parasitoid,Aphidius ervi, andRegiella insecticolaprotects against aphid‐specific fungal pathogens, includingPandora neoaphidis. Here, we investigated whether these two common aphid symbionts protect against a specialized virusA. pisum virus(APV), and whether their antifungal and antiparasitoid services are impacted by APV infection. We found that APV imposed large fitness costs on symbiont‐free aphids and these costs were elevated in aphids also housingH. defensa. In contrast, APV titres were significantly reduced and costs to APV infection were largely eliminated in aphids withR. insecticola. To our knowledge,R. insecticolais the first aphid symbiont shown to protect against a viral pathogen, and only the second arthropod symbiont reported to do so. In contrast, APV infection did not impact the protective services of eitherR. insecticolaorH. defensa. To better understand APV biology, we produced five genomes and examined transmission routes. We found that moderate rates of vertical transmission, combined with horizontal transfer through food plants, were the major route of APV spread, although lateral transfer by parasitoids also occurred. Transmission was unaffected by facultative symbionts. In summary, the presence and species identity of facultative symbionts resulted in highly divergent outcomes for aphids infected with APV, while not impacting defensive services that target other enemies. These findings add to the diverse phenotypes conferred by aphid symbionts, and to the growing body of work highlighting extensive variation in symbiont‐mediated interactions.more » « less
-
Abstract BackgroundMost phages infect free-living bacteria but a few have been identified that infect heritable symbionts of insects or other eukaryotes. Heritable symbionts are usually specialized and isolated from other bacteria with little known about the origins of associated phages.Hamiltonella defensais a heritable bacterial symbiont of aphids that is usually infected by a tailed, double-stranded DNA phage named APSE. MethodsWe conducted comparative genomic and phylogenetic studies to determine how APSE is related to other phages and prophages. ResultsEach APSE genome was organized into four modules and two predicted functional units. Gene content and order were near-fully conserved in modules 1 and 2, which encode predicted DNA metabolism genes, and module 4, which encodes predicted virion assembly genes. Gene content of module 3, which contains predicted toxin, holin and lysozyme genes differed among haplotypes. Comparisons to other sequenced phages suggested APSE genomes are mosaics with modules 1 and 2 sharing similarities withBordetella-Bcep-Xylostella fastidiosa-like podoviruses, module 4 sharing similarities with P22-like podoviruses, and module 3 sharing no similarities with known phages. Comparisons to other sequenced bacterial genomes identified APSE-like elements in other heritable insect symbionts (Arsenophonusspp.) and enteric bacteria in the familyMorganellaceae. ConclusionsAPSEs are most closely related to phage elements in the genusArsenophonusand other bacteria in theMorganellaceae.more » « less
-
Insects harbor a variety of maternally inherited bacterial symbionts. As such, variation in symbiont presence/absence, in the combinations of harbored symbionts, and in the genotypes of harbored symbiont species provide heritable genetic variation of potential use in the insects’ adaptive repertoires. Understanding the natural importance of symbionts is challenging but studying their dynamics over time can help to elucidate the potential for such symbiont-driven insect adaptation. Toward this end, we studied the seasonal dynamics of six maternally transferred bacterial symbiont species in the multivoltine pea aphid (Acyrthosiphon pisum). Our sampling focused on six alfalfa fields in southeastern Pennsylvania, and spanned 14 timepoints within the 2012 growing season, in addition to two overwintering periods. To test and generate hypotheses on the natural relevance of these non-essential symbionts, we examined whether symbiont dynamics correlated with any of ten measured environmental variables from the 2012 growing season, including some of known importance in the lab. We found that five symbionts changed prevalence across one or both overwintering periods, and that the same five species underwent such frequency shifts across the 2012 growing season. Intriguingly, the frequencies of these dynamic symbionts showed robust correlations with a subset of our measured environmental variables. Several of these trends supported the natural relevance of lab-discovered symbiont roles, including anti-pathogen defense. For a seventh symbiont—Hamiltonella defensa—studied previously across the same study periods, we tested whether a reported correlation between prevalence and temperature stemmed not from thermally varying host-level fitness effects, but from selection on co-infecting symbionts or on aphid-encoded alleles associated with this bacterium. In general, such “hitchhiking” effects were not evident during times with strongly correlated Hamiltonella and temperature shifts. However, we did identify at least one time period in which Hamiltonella spread was likely driven by selection on a co-infecting symbiont—Rickettsiella viridis. Recognizing the broader potential for such hitchhiking, we explored selection on co-infecting symbionts as a possible driver behind the dynamics of the remaining six species. Out of twelve examined instances of symbiont dynamics unfolding across 2-week periods or overwintering spans, we found eight in which the focal symbiont underwent parallel frequency shifts under single infection and one or more co-infection contexts. This supported the idea that phenotypic variation created by the presence/absence of individual symbionts is a direct target for selection, and that symbiont effects can be robust under co-habitation with other symbionts. Contrastingly, in two cases, we found that selection may target phenotypes emerging from symbiont co-infections, with specific species combinations driving overall trends for the focal dynamic symbionts, without correlated change under single infection. Finally, in three cases—including the one described above for Hamiltonella—our data suggested that incidental co-infection with a (dis)favored symbiont could lead to large frequency shifts for “passenger” symbionts, conferring no apparent cost or benefit. Such hitchhiking has rarely been studied in heritable symbiont systems. We propose that it is more common than appreciated, given the widespread nature of maternally inherited bacteria, and the frequency of multi-species symbiotic communities across insects.more » « less
-
Abstract Most insects harbour influential, yet non‐essential heritable microbes in their hemocoel. Communities of these symbionts exhibit low diversity. But their frequent multi‐species nature raises intriguing questions on roles for symbiont–symbiont synergies in host adaptation, and on the stability of the symbiont communities, themselves. In this study, we build on knowledge of species‐defined symbiont community structure across US populations of the pea aphid,Acyrthosiphon pisum. Through extensive symbiont genotyping, we show that pea aphids' microbiomes can be more precisely defined at the symbiont strain level, with strain variability shaping five out of nine previously reported co‐infection trends. Field data provide a mixture of evidence for synergistic fitness effects and symbiont hitchhiking, revealing causes and consequences of these co‐infection trends. To test whether within‐host metabolic interactions predict common versus rare strain‐defined communities, we leveraged the high relatedness of our dominant, community‐defined symbiont strains vs. 12 pea aphid‐derived Gammaproteobacteria with sequenced genomes. Genomic inference, using metabolic complementarity indices, revealed high potential for cooperation among one pair of symbionts—Serratia symbioticaandRickettsiella viridis. Applying the expansion network algorithm, through additional use of pea aphid and obligateBuchnerasymbiont genomes,SerratiaandRickettsiellaemerged as the only symbiont community requiring both parties to expand holobiont metabolism. Through their joint expansion of the biotin biosynthesis pathway, these symbionts may span missing gaps, creating a multi‐party mutualism within their nutrient‐limited, phloem‐feeding hosts. Recent, complementary gene inactivation, within the biotin pathways ofSerratiaandRickettsiella, raises further questions on the origins of mutualisms and host–symbiont interdependencies.more » « less
-
Abstract Ecologically relevant symbioses are widespread in terrestrial arthropods but based on recent findings these specialized interactions are likely to be especially vulnerable to climate warming. Importantly, empirical data and climate models indicate that warming is occurring asynchronously, with night‐time temperatures increasing faster than daytime temperatures. Daytime (DTW) and night‐time warming (NTW) may impact ectothermic animals and their interactions differently as DTW results in greater daily temperature variation and moves organisms nearer to their thermal limits, while NTW avoids thermal limits and may relieve constraints of cooler night‐time temperatures; a nuance that has largely been ignored in the literature.In laboratory experiments, we investigated how the timing of warming influences a widespread defensive mutualism involving the pea aphidAcyrthosiphon pisum, and its heritable symbiont,Hamiltonella defensa, which protects against an important natural enemy, the parasitic waspAphidius ervi.Three aphid sublines were experimentally created from single aphid genotype susceptible toA. ervi: one line infected with a highly protectiveH. defensastrain, one infected with a moderately protective strain and one without any facultative symbiont. We examined aphid fitness in the presence and absence of parasitoids and when exposed to an average 2.5°C increase occurring across three warming scenarios (night‐time vs. daytime vs. uniform) relative to no‐warming controls.An increase of 2.5°C, as predicted to occur by the IPCC before 2100, was sufficient to disable the aphid defensive mutualism regardless of the timing of warming; a surprising result given that the daily maxima for control and NTW scenarios were identical. We also found that warming negatively impacted (a) symbiont‐mediated interactions between host and parasitoid more than symbiont‐free ones; (b) species interactions (host–parasitoid) more than each participant independently and (c) aphids more than parasitoids even though higher trophic levels are generally predicted to be more affected by warming.Here we show that 2.5°C warming, regardless of timing, negatively impacted a common microbe‐mediated defensive mutualism. While this was a laboratory‐based study, results suggest that temperature increases predicted in the near‐term may disrupt the many ecological symbioses present in terrestrial ecosystems.more » « less
-
Abstract Facultative, heritable endosymbionts are found at intermediate prevalence within most insect species, playing frequent roles in their hosts’ defence against environmental pressures. Focusing onHamiltonella defensa, a common bacterial endosymbiont of aphids, we tested the hypothesis that such pressures impose seasonal balancing selection, shaping a widespread infection polymorphism. In our studied pea aphid (Acyrthosiphon pisum) population,Hamiltonellafrequencies ranged from 23.2% to 68.1% across a six‐month longitudinal survey. Rapid spikes and declines were often consistent across fields, and we estimated that selection coefficients forHamiltonella‐infected aphids changed sign within this field season. Prior laboratory research suggested antiparasitoid defence as the majorHamiltonellabenefit, and costs under parasitoid absence. While a prior field study suggested these forces can sometimes act as counter‐weights in a regime of seasonal balancing selection, our present survey showed no significant relationship between parasitoid wasps andHamiltonellaprevalence. Field cage experiments provided some explanation: parasitoids drove modest ~10% boosts toHamiltonellafrequencies that would be hard to detect under less controlled conditions. They also showed thatHamiltonellawas not always costly under parasitoid exclusion, contradicting another prediction. Instead, our longitudinal survey – and two overwintering studies – showed temperature to be the strongest predictor ofHamiltonellaprevalence. Matching some prior lab discoveries, this suggested that thermally sensitive costs and benefits, unrelated to parasitism, can shapeHamiltonelladynamics. These results add to a growing body of evidence for rapid, seasonal adaptation in multivoltine organisms, suggesting that such adaptation can be mediated through the diverse impacts of heritable bacterial endosymbionts.more » « less
An official website of the United States government
